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D
ue to their atomic-scale thickness,
two-dimensional materials such as
graphene and molybdenum disul-

fide (MoS2) represent the ultimate limit of
material scaling in the vertical dimension.
Their planar geometrymakes them interest-
ing for incorporation into nanoelectronic
devices where they could offer significant
power savings due to reduced short chan-
nel effects. While graphene has received
widespread attention due to its massless
charge carriers,1,2 the lack of an intrinsic
band gap limits its applications in electro-
nics to radio frequency (RF) and high-speed
analog electronics. Monolayer MoS2

3 on the
other hand is a two-dimensional semicon-
ductor with a direct band gap of 1.8 eV.4

Silicon-level mobility and high current
on/off ratio have recently beendemonstrated5

as well as its ability to amplify signals6 and
perform logic7 operations in integrated
circuits. Its high stiffness and breaking
strength8 also make it interesting for appli-
cations in flexible electronics, while the
broken inversion symmetry in MoS2 could
be exploited for valleytronics.9,10

MoS2 is a prototypical semiconductor
from the transition metal dichalcogenide
(TMD) family of materials with the common
formula MX2, where M stands for a transi-
tion metal (M = Mo, W, Nb, Ta, Ti, Re) and X
for Se, S, or Te. TMD crystals are formed by
vertical stacking of layers, 6.5 Å thick. Layers
are weakly bonded to each other by van der
Waals forces which allows easy cleavage
using either the micromechanical cleavage
technique11,12 commonly used for the
production of graphene or liquid phase
exfoliation.13 Large-area MoS2 can also be
grown using CVD-like growth techniques.14,15

Metal and chalcogenide atoms are strongly
bound within the layers, resulting in high
mechanical strength, 30 times higher than
steel in the case of MoS2

8 and stability up
to 1100 �C in inert atmosphere. MoS2 is
a semiconductor with a band gap that
can be tuned by reducing the number

of layers: bulk MoS2 is semiconducting with
an indirect band gap of 1.2 eV,16 while
single-layer MoS2 is a direct gap semi-
conductor4,17�19 with a band gap of 1.8
eV4 due to quantum confinement.19 The
presence of a band gap in single-layer
MoS2 allowed the fabrication of transistors5

and circuits7 based on this two-dimensional
semiconductor. These transistors showed
high mobility (typically 200 cm2/V 3 s, reach-
ing as high as 780 cm2/V 3 s) and high current
on/off ratios (>108). The maximal measured
on-current in these devices was 10 μA (2.5
μA/μm) for a drain bias Vds = 500 mV, while
the highest transconductance, defined as
gm = dIds/dVtg observed at Vds = 500 mV
was ∼4 μS (1 μS/μm). Although these char-
acteristics were extremely promising for
applications in low-power digital electron-
ics, several improvements could still be
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ABSTRACT

Two-dimensional (2D) materials such as monolayer molybdenum disulfide (MoS2) are

extremely interesting for integration in nanoelectronic devices where they represent the

ultimate limit of miniaturization in the vertical direction. Thanks to the presence of a band gap

and subnanometer thickness, monolayer MoS2 can be used for the fabrication of transistors

exhibiting extremely high on/off ratios and very low power dissipation. Here, we report on the

development of 2D MoS2 transistors with improved performance due to enhanced electrostatic

control. Our devices show currents in the 100 μA/μm range and transconductance exceeding

20 μS/μm as well as current saturation. We also record electrical breakdown of our devices

and find that MoS2 can support very high current densities, exceeding the current-carrying

capacity of copper by a factor of 50. Our results push the performance limit of MoS2 and open

the way to their use in low-power and low-cost analog and radio frequency circuits.
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desirable from the point of view of device perfor-
mance. For example, the lack of observed saturation
together with the relatively low transconductance
value would imply low transistor gain,20,21 an impor-
tant number for applications in analog electronics and
power amplification. In the case of graphene, drain
current saturation is very difficult to achieve, with
devices in general showing weak saturation22,23 or no
saturation at all.24

Furthermore, it is unclear at this point whatwould be
the performance limits and maximal on-current that
two-dimensional (2D) MoS2 field-effect transistors
(FET) could support. They have so far been explored
only using theoretical calculations in the ballistic
regime.25,26 Here we report a single-layer transistor
with enhanced performance due to reduced access
resistance and improved electrostatic control due to
full-channel gating. Our transistors show a factor of 30
improvement in transconductance, 2 orders of magni-
tude improvement in the on-current (Ion = 600 μA or
250 μA/μm) during normal operation, the first observa-
tion of drain current saturation in monolayer MoS2
transistors, and the highest mobility reported so far for
monolayer MoS2. The high on-current in our devices
also allows us to measure the breakdown current
density in MoS2 which is close to 5 � 107 A/cm2 and
50 times higher than in copper. Our results demon-
strate that monolayer MoS2 could be used in analog
circuit applications where it could provide power gain
and support large current densities.

RESULTS AND DISCUSSION

Monolayer flakes of MoS2 were prepared by me-
chanical cleavage and scotch-tape exfoliation techni-
ques.12,27 Commercially available bulk crystals of MoS2
(SPI Supplies Brand Moly Disulfide)28 served as the
material source. The material was deposited on a
degenerately doped silicon substrate covered with
270 nm of dry SiO2 (Figure 1a).29 Monolayer flakes
were detected and distinguished from thicker layers by
measuring their optical contrast with respect to the
substrate. We have previously established the correla-
tion between contrast and thickness as measured by
atomic force microscopy.29

Electrical contacts were fabricated applying electron-
beam lithography followed by the deposition of
90 nm Au. After acetone lift-off, the devices were
annealed for 2 h in inert Ar atmosphere at 200 �C to
improve contact resistance and clean the MoS2 surface
before top-gate oxide deposition by atomic layer
deposition (ALD). A 30 nm thick layer of HfO2 serving
as the gate dielectric and mobility booster5,30 is grown
on top ofMoS2. A Cr/Au top-gate of 10/50 nm thickness
was then fabricated using another electron-beam
lithography step (Figure 1b). The substrates were
cleaved and glued to a chip carrier. Final interconnects

were wire-bonded. Electrical characterization of all
devices was performed at room temperature in ambi-
ent conditions (air) using an Agilent E5270B parameter
analyzer. The cross section of the device is presented in
Figure 1c.
This monolayer MoS2 FET was first characterized by

applying a fixed low drain voltage Vds while sweeping
the back-gate voltage Vbg. In Figure 2a, the corre-
sponding measurement at Vds = 20 mV is depicted.
We use the expression for the low-field field-effect
mobility μ = [dIds/dVbg] � [L/WCiVds], where channel
length is Lch = 500 nm, channel width W = 2 μm, and
back-gate capacitance Ci = ε0εr/d = 1.3 � 10�4 F/m2

(εr = 3.9, d = 270 nm). With this, a field-effectmobility of
μ = 1090 cm2/V 3 s at a drain voltage of Vds = 20 mV can
be estimated. This value is the highest mobility pre-
sented to date in MoS2 FETs and represents a lower
limit of the mobility in the 6.5 Å thick semiconducting
MoS2 monolayer since contact resistance is not being
accounted for. Errors in the estimate of capacitive
coupling could be a further source of experimental
uncertainty. A possible cause for the significant in-
crease in mobility could be the fact that in a shorter
channel the charge-trap density of the SiO2 surface
right below the 6.5 Å thick charge carrier channel is
reduced. Access resistance could also be reduced in

Figure 1. MoS2 FET device architecture. (a) Optical image of
monolayer MoS2 (6.5 Å thick) exfoliated on a silicon sub-
strate covered with a 270 nm thick SiO2 layer. Scale bar is
5 μm. (b) SEM image of the final device with a HfO2 gate
dielectric and a local top-gate fabricated on top of the flake
shown in a. Au leads of the shown device are separated by
500 nm, and the Cr/Au top-gate is 750 nm long and covers
the entire channel between source and drain contact. Scale
bar is 2 μm. (c) Three-dimensional representation of the
monolayer MoS2 FET architecture utilized in this study. The
Si substrate serves as the back-gate. One of the 90 nm thick
Au contacts is grounded, while the other side serves as the
drain. The Cr/Au top-gate 10/50 nm thick is separated from
the MoS2 flake by a 30 nm thick HfO2 layer.
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this case due to full-channel gating. This motivates
further studies on even shorter channel lengths (Lch <
500 nm). In Figure 2b the Ids�Vtg characteristics for
varying Vds is depicted. The Ion/Ioff ratio for an applied
drain voltage of Vds = 4 V and the(6 V variation of top-
gate voltage Vtg is on the order of 108. This Ion/Ioff ratio
exceeds the value of 104�107 considered necessary for
applications in CMOS-like digital circuits.21,31 At Vds =
500 mV, a subthreshold slope, defined as S = (d(logIds)/
dVtg)

�1, of S = 178 mV/dec can be extracted. In earlier
studies, a lower value for the subthreshold slope has
been reported.5 Possible causes for a shallower sub-
threshold swing in this case could be partial electro-
static shielding of the top-gate by source and drain
contacts and a higher trap charge density in either the
MoS2/SiO2 or MoS2/HfO2 interface.
The electrical conductivity of the monolayer MoS2

can be controlled in a wide range using a top-gate
because of the presence of a band gap and large
degree of electrostatic control due to its atomic-scale
thickness.25 From the top-gating (Ids�Vtg characteris-
tics (Ids�Vtg) shown in Figure 2b, the transconductance
gm = dIds/dVtg can be derived. In Figure 2c, we plot the

2D MoS2 device transconductance for three different
drain voltages: Vds = 500 mV, 1 V, and 4 V. The maximal
derived transconductance gm, max (Vds = 4 V) = 34μS/μm
and is the highest value of transconductance reported
for MoS2 transistors to date. The transconductance at
Vds = 1 V is ∼20 μS/μm.
Subsequently, the drain�source bias (Ids�Vds) char-

acteristic is probed and reported in Figure 2d. For these
measurements, the back-gate voltage Vbg is kept at 0 V.
At relatively low drain voltages exceeding Vds of 1 V,
the current-carrying capacity of the MoS2 charge-
carrying channel exhibits saturation, making this the
first observation of drain current saturation in mono-
layer MoS2 FETs. The drain�source conductance gds =
dIds/dVds is close to 0 (gds < 2 μS/μm) in this region of
operation. In this regime, the transistor can operate as a
voltage-regulated current source. Saturation is also
important for achieving maximum possible operating
speeds.21 This measurement was repeated on the
same device with varying top-gate voltages Vtg rang-
ing between 0 and 6 V (the maximum value is limited
by the dielectric strength of the oxide and at a HfO2

thickness of 30 nm oxide breakthrough has been

Figure 2. Characterization of amonolayerMoS2 FET transistor. (a) Room-temperature back-gate transfer characteristic for the
MoS2 FET depicted in Figure 1a,b under the applied drain voltage Vds = 20mV. We estimate an effective field-effect mobility μfe =
1090 cm2/V 3 s. (b) Ids�Vtg curve recorded for three different drain voltages: Vds = 500mV, 1 V, and 4 V. The Ion/Ioff ratio exceeds
108. The subthreshold swing S at Vds = 500 mV is 178 mV/dec. (c) Transconductance gm = dIds/dVtg derived from Ids�Vtg
characteristics shown in b. The peak transconductance for Vds = 4 V is gm,max = 34 μS/μm and is the highest value of
transconductance reported for MoS2 transistors to date. (d) Ids�Vds characteristics measured for different top-gate voltages
Vtg for drain voltages Vds reaching 3 V. In this device, the on-current is Ion = 344 μA (172 μA/μm) for Vtg = 6 V and Vds = 3 V,
corresponding to a current density of J = 2.5� 107 A/cm2. This value is 25 times larger than the breakdown current density of
copper. At typical bias voltages with Vds exceeding∼2 V, the drain current shows saturationwith the drain�source gds = dIds/
dVds close to 0 (gds < 2 μS/μm) at Vds = 3 V. At low bias voltages, the curves are linear, indicating that the contacts are ohmic.
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observed at Vtg values exceeding 8 V). At a top-gate
voltage of Vtg = 6 V and a drain voltage of Vds = 3 V, the
monolayerMoS2 channel is carrying a current of 344μA
(172 μA/μm). When the thickness of the material (t =
6.5 Å) is taken into account, this corresponds to an
exceptionally high current density of more than 2.5 �
107 A/cm2. For lowbias voltages, the curve shows linear
and symmetric behavior, indicating that our Au�MoS2
contacts are ohmic.
The ratio of transconductance to drain conductance

(A = gm/gds) is an important figure of merit, and it
represents the highest gain achievable using a single
transistor.20With relatively high values of transconduc-
tance (gm = 20 μS/μm for Vds = 1 V and gm = 34 μS/μm
for Vds = 4 V) and observed current saturation (gds < 2
μS/μm), our results show that MoS2 could be interest-
ing not only for applications in digital electronics7

but also for analog applications where it could offer
gain >10.
We further investigate the high current-carrying

capacity and electrical breakdown of monolayer
MoS2 using two different measurement schemes. In
the first one, the Vds is increased in steps of 200 mV
approximately every 30 s in order to keep the current
flowing under constant conditions for a short period of
time. This stepwise increase of Vds is continued until
the device breaks down. The time dependence of the
drain current for a typical device at the back-gate
voltage of Vbg = 0 V and a top-gate voltage Vtg = 3 V
is shown in Figure 3a with the corresponding Ids�Vds
dependence presented in Figure 3b. For small values of
the drain voltage, the drain current increases as a linear
function of the voltage, and above ∼1 V, the current
begins to saturate, reachinga valueof 600μA (250μA/μm)
for Vds = 3.4 V. Further increase in bias voltage results in
a rapid increase of the current, possibly due to Joule
heating-induced contact annealing, up to a value of
768 μA (320 μA/μm) for Vds = 4.2 V, which is the
maximum recorded current for this device. With the
thickness of a monolayer of t = 6.5 Å, this corresponds
to a current density of 4.9 � 107 A/cm2. Further
increase of the voltage results in a gradual current
decrease and complete failure at a bias voltage of Vds =
5.4 V. The described behavior has been similarly ob-
served for five additional devices. We have also used a
second measurement method in which the drain
voltage Vds is continuously swept between increasing
values of maximal voltage until breakdown occurs.
Both methods result in similar maximal current values.
We compare the breakdown current density of

monolayer MoS2 with other typical nanoelectronic
materials in Figure 4. Record values for maximum
current densities are reported for graphene on

Figure 3. Maximum current density of monolayer MoS2
FETs. (a) Time trace of the drain current Ids recorded during
the breakdownof amonolayerMoS2 FET. Back-gate voltage
Vbg = 0 V, top-gate voltage Vtg = 3 V. Inset: corresponding
Vds vs time. Vds is increased in steps of 200 mV approxi-
mately every 30 s. The current is allowed to stabilize
between the steps. The maximum recorded value of the
current for this device is Ids,max = 768 μA (320 μA/μm) for Vds =
4.2 V, whichmarks the beginning of the electrical deteriora-
tion of the device and its current-carrying capacity withfinal
breakdown occurring at Vds = 5.4 V. This corresponds to a
current density of J = 4.9 � 107 A/cm2 and represents the
highest current density reported for MoS2 so far. (b) Ids�Vds
characteristics for the same measurement as depicted in
part a.

Figure 4. Comparison of breakdown current density for
different nanoelectronic materials. The current-carrying
capacity of copper is reported to be on the order of 106

A/cm2. Breakdown currents demonstrated in this study for a
single layer of semiconducting MoS2 are close to 5 � 107

A/cm2. This value is 50 times higher than the electromigra-
tion-limited current-carrying capacity of copper.35 For gra-
phene andmetallic single-walled carbon nanotubes, values
on the order of 108 and 109 A/cm2 for devices on SiO2

substrates have been reported in the literature.32,33
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SiO2 (>10
8 A/cm2),32 metallic single-walled carbon nano-

tubes (>109 A/cm2),33 and copper (∼106 A/cm2).34

Considering that MoS2 is a semiconductor, the ex-
tracted maximum current density demonstrated is
extremely high and is 50 times higher than the limit
set for metals by electromigration.35 This is due to
strong intralayer Mo�S covalent bonds8,36 which
are much stronger than metallic bonds. Integration
with high thermal conductivity substrates such as
diamond37 could result in further increase of break-
down current density.

CONCLUSION

To summarize, we have produced high-performance
2D transistors based on monolayer MoS2 showing the
highest on-current, highest transconductance and
highest estimated mobility reported to date for a 2D

transition metal dichalcogenide, while keeping the
extremely high room-temperature current on/off ratio
of 108. Our transistors with a channel length of 500 nm
and no underlap show drain current saturation for the
first time in monolayer MoS2, with drain conductance
gds lower than 2μS andmaximum transconductance of
gm = 34 μS/μm. We also find that monolayer MoS2 can
support large current densities, close to 5� 107 A/cm2,
exceeding breakdown current density of copper by a
factor of 50.
Our results demonstrate that MoS2 is suitable for

the production of high-performance transistors with
high internal gain capable of supporting high cur-
rent densities. This is an important step in realizing
2D nanoelectronic circuits and devices characterized
with high-performance, low-power dissipation, and
low cost.

METHODS
Single layers of MoS2 are exfoliated from commercially avail-

able crystals of molybdenite (SPI Supplies Brand Moly Disulfide)28

using the scotch-tape micromechanical cleavage technique
method pioneered for the production of graphene. After
90 nm thick Au contact deposition, devices are annealed in
100 sccm of Ar at 200 �C for 2 h.38 ALD is performed in a
commercially available system (Beneq) using a reaction of H2O
with tetrakis(ethyl methylamido)hafnium. Electrical character-
ization is carried out using an Agilent E5270B parameter
analyzer and a home-built shielded probe station with micro-
manipulated probes.
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